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Abstract 26 

 27 

Timor has yielded the earliest evidence for modern humans in Wallacea, but despite its 28 

long history of modern human occupation, there is little evidence for human-induced Late 29 

Pleistocene extinctions. Here, we report on Late Pleistocene and Holocene bird remains from 30 

Jerimalai B and Matja Kuru 1, sites that have yielded extensive archaeological sequences 31 

dating back to >40 ka. Avian remains are present throughout the sequence, and quails 32 

(Phasianidae), buttonquails (Turnicidae) and pigeons (Columbidae) are the most abundant 33 

groups. Taphonomic analyses suggest that the majority of bird remains, with the exception of 34 

large-bodied pigeons, were accumulated by avian predators, likely the Barn owl Tyto sp. All 35 

species represent extant taxa that are still present on Timor today, with the exception of a 36 

crane, Grus sp., from the Late Pleistocene of Jerimalai B, and a large buttonquail, Turnix sp., 37 

from Matja Kuru 1. The crane likely represents an extirpated population of cranes, which 38 

were much more widespread throughout the Indonesian archipelago during the Quaternary. 39 

The large buttonquail is present at Matja Kuru 1 alongside the extant T. maculosus until at 40 

least 1372–1300 cal BP. These two species represent the first records of avian extinctions on 41 

Timor. However, a causal relationship between the extinction of these two taxa and human 42 

impact cannot be demonstrated at this point.  43 

 44 

Keywords: Quaternary, island biogeography, Wallacea, birds, extinction, megafauna 45 

 46 

 47 

 48 

 49 

 50 
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1. Introduction 51 

  52 

The island of Timor, the largest in the Lesser Sunda island chain, has been the subject 53 

of ornithological exploration for more than two hundred years (Hellmayr, 1914; Mayr, 1944). 54 

The avifauna consists of 262 bird species, of which 169 are breeding species, 76 migrants and 55 

17 vagrants (Trainor et al., 2008). The Timor Group (including associated islands) has the 56 

highest level of endemics (28) within the Lesser Sundas. Due to its relatively close position to 57 

Australia, the Timor avifauna contains the highest proportion of Australian elements within 58 

Indonesia, initially reported to be ~50% (Mayr, 1944; Monk et al., 1997), but is now believed 59 

to lie around 31% due to phylogenetic changes and wider sampling of taxa (Trainor et al., 60 

2008). Despite this long tradition of ornithological research, little is known regarding past 61 

avian distributions and diversity. This is in line with the rest of Wallacea, as the fossil bird 62 

record for Island Southeast Asia is quite poor (Meijer, 2014).  63 

Timor has yielded the earliest evidence for modern humans in Wallacea, and it may 64 

have been the final stepping stone for modern humans dispersing into Australia via the 65 

southern route (O’Connor, 2007). Archaeological sequences from Jerimalai Shelter, Lene 66 

Hara Cave, and Laili Cave in Timor Leste date back to 43–41 ka, ~42 ka and ~44 ka, 67 

respectively (Hawkins et al., 2017b; O’Connor, 2007; O’Connor et al., 2017). The evidence 68 

from Jerimalai and Lene Hara indicates that early modern humans on Timor were adept at 69 

exploiting marine resources (O’Connor, 2007; O’Connor et al., 2010, 2011). Nonetheless, 70 

data from Laili Cave suggest that Late Pleistocene modern humans targeted a wide range of 71 

different resources, including terrestrial vertebrates, depending on availability (Hawkins et al., 72 

2017b).  73 

The systematic exploitation of birds was once considered a behavior exclusive to 74 

modern humans (Klein 1989) but has now also been observed in Neanderthals (Blasco et al., 75 
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2014; Finlayson et al., 2016) and may even extend back into the Middle Pleistocene (Blasco 76 

et al., 2012). Hunting birds for subsistence is currently widespread throughout the Indonesian 77 

archipelago, but there is as of yet no evidence for the systematic exploitation of birds by 78 

hominins in the region. On Flores, hominins have been present since the early Middle 79 

Pleistocene (van den Bergh et al., 2016), but evidence for the exploitation of birds as a food 80 

source at either Liang Bua or the So’a Basin is lacking (Meijer et al., 2013, 2015a). On Timor, 81 

bird remains are present throughout the sequence at Laili Cave (Hawkins et al., 2017a,b), as 82 

well as in Tron Bon Lei rock shelter on nearby Alor Island (Hawkins et al., 2017c). 83 

Taphonomic signatures suggests that the majority of bird remains at Laili and Tron Bon Lei 84 

were the result of Barn owl predation (Hawkins et al., 2017a,c). However, the presence of 85 

pigeons and ducks at Laili, taxa with a body size outside the preferred prey size of Barn owls, 86 

has been interpreted as evidence for humans occasionally foraging on birds (Hawkins et al., 87 

2017a).  88 

Despite recording the oldest modern human occupation site in Wallacea, the Laili 89 

sequence has not yielded any extinct avian taxa. This is in line with evidence from other Late 90 

Pleistocene modern human sites on Timor where fossils of extinct megafauna are absent. In 91 

the Pleistocene, Timor likely hosted two species of pygmy proboscidean, Stegodon timorensis 92 

and Stegodon ‘trigonocephalus’, a giant tortoise, and a large, possibly endemic species of 93 

Varanus (Hooijer, 1971, 1972; Verhoeven, 1964). The absence of these taxa in the earliest 94 

modern human sequences at Laili and other cave sites suggests that Timor’s Quaternary 95 

megafauna became extinct before the arrival of modern humans on the island (Louys et al., 96 

2016). 97 

Here, we report on bird remains excavated from deposits at Jerimalai Square B and 98 

Matja Kuru 1 Squares A and AA  that cover the Holocene and Late Pleistocene. The avian 99 

assemblages from both sites significantly extend the Timor fossil bird record known from 100 
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Laili; they are the most diverse described from Timor so far, and contain a number of 101 

previously unrecorded species. In addition, these assemblages yield the first extinct avian taxa 102 

for Timor, thereby shedding light on past avian extinctions on the island as well as the 103 

island’s Quaternary megafauna.  104 

 105 

 106 

2. Materials and Methods  107 

 108 

2.1 Regional setting 109 

 110 

Jerimalai (8'24.84' S, 127'17.50' E) is a small coralline limestone shelter located 111 

southeast of the village of Tutuala at the easternmost tip of Timor Leste (Figure 1). It 112 

currently sits 75 m above sea level and a kilometer from the current coastline. The site was 113 

located in 2004, and two test pits of 1m x 1m (Square A and B) were excavated at Jerimalai in 114 

2005. Excavations were carried out in spits of 1–5 cm which followed stratigraphic 115 

boundaries where visible. Sediments were wet-screened through 1.5 mm mesh screens. Matja 116 

Kuru 1 (8'24.87' S, 127'07.36' E) is located in an uplifted limestone ridge northeast of the 117 

modern village of Poros, approximately 370 m above sea level and about 8 kilometers from 118 

the coast. Excavations at Matja Kuru 1 took place in 2001 and consisted of a 1 x 2 m test-pit 119 

(conjoined Squares A and AA), also sampled in approximately 5 cm spits. The geochronology 120 

and archaeological sequences of Jerimalai and Matja Kuru 1 have been described by 121 

O’Connor (2007) and Langley and O’Connor (2015) and we refer to those publications for 122 

more details. 123 

 124 

2.2 Fossil analyses 125 
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 126 

Avian remains were identified by using the avian skeleton collection at the 127 

Smithsonian Institution's National Museum of Natural History (prefix NMNH) in 128 

Washington, DC (USA), and the Bergen University Museum (prefix B and BM) collections in 129 

Bergen, Norway. Comparative material examined (Appendix 1) included skeletons of resident 130 

and migrant bird species from Timor (following Eaton et al., 2016 and Trainor et al., 2008), 131 

Indonesia, and Australia (following Avibase). The systematic framework follows Howard and 132 

Moore's Checklist (Dickinson and Christides, 2014; Dickinson and Remsen, 2013), with the 133 

exception of Gruidae (cranes), as species formerly placed in Anthropoides (A. virgo and A. 134 

paradisea) and Antigone (A. canadensis, A. vipio A. antigone and A. rubicunda) are now 135 

placed within Grus (Yu et al.,2011), and Turnicidae, for which there is now strong support for 136 

placing them in Charadriiformes (Baker et al., 2007). Osteological terminology primarily 137 

follows Baumel and Witmer (1993) and Howard (1929). Juveniles were identified based on 138 

the porosity and texture of the bone surfaces. Measurements were taken with digital calipers 139 

to the nearest 0.01 mm. Specimens were examined for signs of bone surface modification, 140 

such as bite and cut marks and digestion, using a Leica MZ16 stereo microscope. Digestion 141 

patterns were scored in five categories following Andrews (1990), with 0 = no digestion, 1 = 142 

minimal, 2 = moderate, 3 = heavy, 4 = extreme. Ten specimens were coated with carbonate on 143 

the outer surface and no observations on surface modifications could be made for these 144 

specimens. AMS radiocarbon dating was performed at the ANU Radiocarbon Dating Centre 145 

(Fallon et al., 2010). Dates are calibrated in Oxcal 4.3 (Bronk Ramsey, 2009) using the ShCal 146 

13 calibration curve (Hogg et al., 2013) to 95.4%.  147 

 148 

3. Results 149 

 150 
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3.1 Bone distribution and taphonomy 151 

A total of 416 avian bones and bone fragments were retrieved from excavations at 152 

Jerimalai B (n= 231) and Matja Kuru 1A and AA (n = 185). Of these, 269 specimens (65%) 153 

were too fragmentary to allow identification beyond Aves. The remaining 147 specimens 154 

could be identified to at least 29 avian taxa in 16 families (Table 1).  155 

Order Family Taxon JeriB MK1A MK1AA 

Anseriformes Anatidae Aythya australis     1 

  

 

Dendrocygna arcuata 

  

1 

Galliformes Phasianidae Synoicus ypsilophorus 5 11 12 

  

 

Synoicus chinensis 1 

 

  

Podicipediformes Podicipedidae cf. Tachybaptus 

  

1 

Columbiformes Columbidae Large pigeon cf. Ducula/Caloenas 2 

 

1 

  

 

Columba vitiensis 6 1 2 

  

 

cf. Treron 1 

 

  

  

 

Macropygia sp. 4 

 

1 

  

 

Ptilinopus sp. 2 

 

  

  

 

Geopelia sp. 1 

 

  

  

 

Columbidae indet. 1 

 

  

Cuculiformes Cuculidae  gen. et sp. indet. 1 

 

  

Gruiformes Gruidae Grus sp.† 1 

 

  

  Rallidae Large rail cf. Fulica/Gallinula?  

 

4 1 

  

 

Medium rail 1 

 

1 2 

  

 

Medium rail 2 

  

1 

  

 

Small rail cf. Zapornia  

 

1   

Charadriiformes Scolopacidae Calidris spp. 

 

3 1 

  Laridae gen. et sp. indet. 

 

1   
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  Turnicidae Turnix large† 

 

9 11 

  

 

Turnix maculosus 2 5 11 

  

 

Charadriiformes indet. 1 

 

1 

Accipitriformes Accipitridae Haliaeetus leucogaster 1 1   

Strigiformes Tytonidae cf. Tyto  1 1   

  Strigidae cf. Ninox 1 

 

  

Falconiformes Falconidae Falco sp. 

  

1 

Passeriformes Motacillidae  Anthus/Motacilla 

  

1 

  Indet Medium passerine 

 

1   

  

 

Small passerine sp. 1 

  

1 

    Small passerine sp. 2   2   

 156 

Table 1.  Species recovered from Jerimalai B and Matja Kuru 1. 157 

 158 

The majority of the avian remains from Jerimalai B and Matja Kuru 1 show signs of 159 

digestion (Table 2). At Jerimalai B, 51.3% showed no signs of digestion, with 35.9 % 160 

showing minimal digestion. At Matja Kuru 1A, 38.5 % showed no digestion and 55.1% 161 

showed minimal digestion. At Matja Kuru 1AA, no digestion and minimal digestion are 162 

27.4% and 66.7%, respectively. Although there is variation between the sites, the taphonomic 163 

signatures are consistent with predation by barn owls (Andrews, 1990).  164 

 165 

  D0 D1 D2 D3 D4 

Jerimalai B 51,3 35,9 8,5 4,3 0 

Matja Kuru 1A 38,5 55,1 6,4 0 0 

Matja Kuru 1AA 27,4 66,7 6,0 0 0 

 166 

Table 2. Digestion scores for avian assemblages from Jerimalai B, Matja Kuru 1A and 1AA. 167 
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 168 

Avian remains are present throughout the sequences in Jerimalai B and Matja Kuru 1A 169 

and AA, but there are distinct differences in abundance between localities. Quails and 170 

buttonquails are most abundant at Matja Kuru 1 (Table 1), in contrast to Jerimalai B, where 171 

quails and buttonquails are rare and pigeons are the most abundant taxon. In terms of 172 

abundance, avian bone remains (including those that cannot be assigned beyond Aves) in 173 

Jerimalai B are most abundant in spit 13 (NISP = 24, Figure 2). O’Connor et al. (2011) 174 

distinguish four distinct phases at Jerimalai B. During phases I–III (spits 69–21, 42,000–5,500 175 

cal yr BP), the number of avian bone remains is low, ranging at around 1–3 specimens per 176 

spit, with a small peak in spit 58 (NISP = 9) (Table 2). Avian remains are most abundant in 177 

phase IV (spits 20–3) which ranges in age from 5,500 cal yr BP to the recent past. 178 

Archaeological and faunal evidence from Jerimalai B shows that already during the early 179 

occupation phase (I, 42–38,000 cal yr BP), modern humans were exploiting marine resources 180 

(O’Connor et al., 2011). Terrestrial fauna, including birds, may have only been 181 

opportunistically exploited. During the Last Glacial Maximum, the site was only infrequently 182 

occupied, but the early Holocene saw an increase in deposition that reflects more intense 183 

occupation. The peak in avian bone abundance observed in Jerimalai B’s Phase IV coincides 184 

with this increase in deposition. Avian bone abundance in Matja Kuru 1A and AA varies 185 

more than in Jerimalai B (Figure 2). In Matja Kuru 1A, avian bone abundance peaks in spit 34 186 

(NISP = 19), whereas in Matja Kuru 1AA, avian bone abundance peaks in spit 23 (NISP = 187 

14). The peak in bone abundance in Matja Kuru 1A occurs just before 5,600 cal yr BP and 188 

coincides roughly with phase IV at Jerimalai B. The peak in Matja Kuru 1AA appears to have 189 

occurred earlier, as it occurs below a date of ~ 16 ka cal BP from spit 21 (although as Langley 190 

and O’Connor (2016) note the lower MK1 deposits may have been disturbed post-191 
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depositionally, as the 16,000 cal BP date is inverted, underlain by a date from spit 25 of ~ 11 192 

ka cal BP).  193 

 194 

3.2 Species accounts 195 

 196 

3.2.1 Anseriformes 197 

3.2.1.1 Anatidae (ducks, geese and swans) 198 

3.2.1.1.1 Aythya australis 199 

A distal left ulna from Matja Kuru 1AA’s spit 3 represents a medium-sized anatid larger than 200 

Dendrocygna, Anas gibberifrons/gracilis and Nettapus pulchrellus, and is in the size range of 201 

Aythya australis and Tadorna radjah. In both Aythya and tadornines, the distal half of the 202 

shaft is straighter than in Anas and Dendrocygna (Worthy, 2004; Worthy and Lee, 2008). 203 

Although the fossil specimen is incomplete, the preserved shaft appears to be straighter than 204 

in Anas. It further differs from Anas in having a shallower incisura tuberculum carpale and 205 

consequently a less pronounced tuberculum carpale (the incisura is deeper and the tuberculum 206 

more pointed in Anas). As such, the specimen mostly resembles Tadorna and Aythya. In distal 207 

view, the dorsal surface between the condylus ventralis ulnaris and the tuberculum carpale is 208 

bulging in Tadorna, whereas it is rather flat in Aythya and the fossil specimen. Although the 209 

specimen is somewhat more robust than the specimens of Aythya available for inspection, it is 210 

morphologically most similar to this genus. The Hardhead Aythya australis is a common 211 

visitor from Australia (Eaton et al., 2016; Trainor et al., 2008), and given the young age of the 212 

specimen (spit 3), it is referred to this species.  213 

3.2.1.1.2 Dendrocygna arcuata 214 

The Wandering Whistling-duck Dendrocygna arcuata is recognized based on a right coracoid 215 

from Matja Kuru 1AA, spit 16 (Fig. 3A). The specimen lacks a pneumatic foramen under the 216 
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acrocoracoid and bears a distinct broad depression on the ventral surface of the sternal blade. 217 

This depression is located just proximal of the sternal articular facet and extends laterally to 218 

the linea intermuscularis ventralis. This depression was not observed in any species of 219 

Tadorna, Anas, Aythya, or Nettapus, but was present in more than half of Dendrocygna 220 

arcuata and D. bicolor specimens. In size, it agrees best with D. arcuata, which is the only 221 

species of Dendrocygna known to occur on Timor today (Eaton et al., 2016; Trainor et al., 222 

2008).  223 

 224 

3.2.2 Galliformes 225 

3.2.2.1 Phasianidae (pheasants and allies) 226 

Twenty-nine specimens can be assigned to quails (Phasianidae). Quails are 227 

morphologically close to buttonquails (Turnicidae) and rails (Rallidae), but can be 228 

distinguished from these groups based on a number of osteological features. In the quail 229 

humerus, the tuberculum ventrale is connected to the caput humeri by a distinct crista incisura 230 

capitis, which bisects the incisura capitis. In rails, the tuberculum ventrale is not connected to 231 

the caput humeri (and the incisura capitis is wide and not bisected), whereas in buttonquails, 232 

the incisura capitis is very short and limited to the ventral aspect of the bone. In the phasianid 233 

carpometacarpus, the processus intermetacarpalis is distinct and reaches the os metacarpale 234 

minor. The carpal trochlea is rounded in ventral aspect, but in dorsal aspect, the dorsal rim of 235 

the trochlea is only rounded proximally, and distally cuts away in a straight line towards the 236 

processus intermetacarpalis. In Turnicidae, the dorsal rim is fully rounded. Small phasianid 237 

tibiotarsi can be distinguished from Turnix and small rails by having a relatively narrower 238 

distal end, and a higher tendinal bridge that is oriented more obliquely than in Turnicidae 239 

(horizontal in Rallidae). In proximal view, the rim formed by the facies articularis medialis 240 

and fossa retropatellaris is smooth in phasianids whereas it is notched in Turnix (i.e. facies 241 
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articularis medialis projects more medially than the fossa retropatellaris). In the proximal 242 

tarsometatarsus, the lateral and medial sides are caudally excavated in Synoicus (Phasianidae), 243 

unlike in Rallidae and Turnicidae. Moreover, Synoicus, as other Phasianidae, has one canal 244 

for the tendon of the musculus flexor digitorum longus (open sulcus in Rallidae), but a 245 

plantarly open sulcus for the superficial flexor tendons of the muscles that flex the second toe 246 

(Mayr, 2016), and the hypotarsus is located laterally. The hypotarsal ridges are 247 

proximodistally equally long in Synoicus, but the lateral ones are shorter in Turnix. In 248 

Rallidae, there is one long central ridge, and some shorter ones. In the distal tarsometatarsus, 249 

the medial and lateral plantar ridges are distinct in Synoicus, and the fossa metatarsi I is most 250 

prominent in Synoicus. All specimens agree in these features with Phasianids, particularly 251 

Synoicus. Only three species of phasianid are present on Timor, one of which is the much 252 

larger Gallus gallus. The other two are Synoicus ypsilophorus and S. chinensis, with the 253 

former being larger than the latter (del Hoyo et al., 2017). Within the twenty-nine specimens, 254 

two species can be distinguished based on size differences. 255 

 256 

3.2.2.1.1 Synoicus ypsilophorus 257 

Twenty-eight specimens (a fragment of a sternum, one coracoid, eleven humeri, two 258 

carpometacarpi, one femur, five tarsometatarsi, and seven tibiotarsi; Jerimalai B, spits 42, 47, 259 

and 62; Matja Kuru 1A, spits 11, 14, 15, 22, 31, 32 and 34; Matja Kuru 1AA, spits 17, 21, 22, 260 

26, 24, 25, 35 ) are assigned to the Brown Quail S. Ypsilophorus (Fig. 3C, E). Although only 261 

two specimens of extant S. ypsilophorus were available for measurements, the remains from 262 

Matja Kuru 1 and Jerimalai B reported agree with S. ypsilophorus in size, and are consistently 263 

larger in measurements of the humerus, tibiotarsus and tarsometatarsus than S. chinensis 264 

(Figure 4).  265 

3.2.2.1 .2 Synoicus chinensis 266 
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The Blue-breasted Quail S. chinensis is represented by only a single fragmentary left distal 267 

tibiotarsus from Jerimalai B, spit 69. The specimen is incomplete, but what remains of the 268 

bone is similar in morphology to S. ypsilophorus, yet smaller. The only meaningful 269 

measurement, distal width (3.1 mm), is smaller than S. ypsilophorus, and in the size range of 270 

Synoicus chinensis (Figure 4B).  271 

 272 

3.2.3 Podicipediformes  273 

3.2.3.1 Podicipedidae (grebes) 274 

3.2.3.1.1. cf. Tachybaptus 275 

Grebes are represented by a single specimen, a right proximal humerus, from Matja Kuru 1 276 

AA, spit 23. This specimen represents only the proximal articulation and a section of the 277 

shaft. The crista deltapectoralis is mostly missing, but appears to have extended down the 278 

shaft for a significant length. The tuberculum dorsale is distinct and set off medially of the 279 

caput humeri. The fossa pneumotricipitalis ventralis is not pneumatized, the fossa 280 

pneumotricipitalis dorsalis is absent, and the margo caudalis is pronounced. In these features, 281 

the specimen agrees very well with the Podicipedidae. Two species of grebe are known from 282 

Timor, Tachybaptus ruficollis and T. novaehollandiae (Eaton et al., 2016; Trainor et al., 283 

2008). In overall size, the specimen from Matja Kuru agrees with smaller grebes such as 284 

Tachybaptus, but is more gracile than T. ruficollis (width of the proximal articulation in fossil 285 

specimen: 8.27 mm, T. ruficollis 8.88 – 9.76 mm, n = 3). The fossil specimen may represent 286 

T. novaehollandiae instead, which is slightly smaller (del Hoyo et al., 2017), but no 287 

specimens of that species were available for comparisons. We therefore tentatively refer it to 288 

the genus Tachybaptus until more comparative material becomes available.  289 

 290 
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3.2.4 Columbiformes 291 

3.2.4.1 Columbidae (pigeons and doves) 292 

Pigeons are represented by at least 6 species, and include large-bodied and small pigeons.  293 

3.2.4.1.1 Large pigeon cf. Ducula/Caloenas 294 

A sternal fragment (Jerimalai B, spit 12), a distal right coracoid (Jerimalai B, spit 14) (Fig. 295 

3H), and juvenile tarsometatarsus shaft (Matja Kuru 1AA, spit 9), represent a large-sized 296 

columbid more robust than Columba and in the size range of Ducula (Imperial pigeons) and 297 

Caloenas (Nicobar pigeon). Both genera are extant on Timor, but the fragmentary nature of 298 

the specimens does not allow for a generic identification. 299 

3.2.4.1.2 Columba vitiensis 300 

The Metallic Pigeon is represented by six specimens from Jerimalai B: a proximal right 301 

coracoid (spit 10) (Fig. 3L), a distal right coracoid (spit 11), a proximal and distal left 302 

coracoid (spit 16 and 17), a left humerus shaft (spit 11), and a distal tibiotarsus (spit 29); a 303 

distal right coracoid from Matja Kuru 1A (spit 15), and a sternal fragment (spit 6) and a distal 304 

right coracoid (spit 13) from Matja Kuru 1AA. The proximal coracoids lack a pneumatic 305 

foramen under the processus acrocoracoideus, which separates them from similarly sized 306 

species of Ptilinopus and Macropygia (Worthy and Wragg, 2008). Furthermore, the proximal 307 

coracoids have a relatively short processus acrocracoideus, which distinguishes them from 308 

Ducula and Caloenas, which have a more elongated processus acrocoracoideus. In these 309 

aspects, the specimens agree best with Columba. The only native species of Columba known 310 

from Timor today is Columba vitiensis (C. livia is considered recently introduced, Eaton et 311 

al., 2016), and as the specimens agree well with this species, they are therefore assigned to 312 

this taxon.  313 

3.2.4.1.3 cf. Treron   314 
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A green pigeon is tentatively reported based on a medium-sized left coracoid from Jerimalai 315 

B, spit 16. The coracoid also lacks a foramen under the processus acrocoracoideus, and 316 

therefore can be distinguished from Ptilinopus and Macropygia. The processus 317 

acrocoracoideus itself is more elongated than in Streptopelia and Chalcophaps. The specimen 318 

is more gracile than the Columba vitiensis coracoid from the same spit, and agrees well with 319 

species within the genus Treron in size and morphology. However, since a number of 320 

columbid species were unavailable for comparison, we only tentatively refer it to this genus.  321 

3.2.4.1.4 Macropygia sp. 322 

Cuckoo doves are reported based on three right coracoids, a left distal tarsometatarsus, and a 323 

proximal right scapula from Jerimalai B, spits 4, 10 (Fig. 3I), 11 and 14 and Matja Kuru 1AA, 324 

spit 12. The coracoids have a pneumatic foramen under the processus acrocoracoideus, in 325 

agreement with Macropygia and Ptilinopus. The specimens are more robust than Ptilinopus 326 

and agree in size  with Macropygia. The scapula and tarsometatarsus are in the size range of 327 

Macropygia and are therefore tentatively referred to this genus as well.  328 

3.2.4.1.5 Ptilinopus sp. 329 

A right proximal coracoid and a left distal carpometacarpus from Jerimalai B’s spit 18 are 330 

referred to fruit doves;. The coracoid is small with a large pneumatic foramen under the 331 

processus acrocoracoideus, and because of its small size, it is attributed to Ptilinopus rather 332 

than Macropygia. The distal carpometacarpus from the size spit is columbiform in shape and 333 

agrees in size with Ptilinopus as well. Two species of fruit dove are known from Timor, P. 334 

cinctus and P. regina (Trainor et al., 2008), with the latter being larger. The small size of the 335 

Jerimalai specimens may indicate that they belong to P. cinctus, but no specimens of this 336 

species were available for comparison.  337 

3.2.4.1.6 Geopelia sp. 338 
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A small dove in the genus Geopelia is represented by a right proximal coracoid from 339 

Jerimalai B, spit 29. This coracoid lacks a foramen under the processus acrocoracoideus, is 340 

smaller in size than Streptopelia and Chalcophaps, and fits quite well with Geopelia striata. 341 

However, since this species is considered introduced (Eaton et al., 2016) and no comparative 342 

material of the second species of Geopelia on Timor, G. maugeus was available; more 343 

material is needed for this specimen to be assigned to species level.  344 

3.2.4.1.7 Columbidae indet. 345 

A right distal humerus from Jerimalai B, spit 39, represents a small species of columbid, but 346 

the specimen is too damaged for any meaningful comparisons.  347 

 348 

3.2.5 Cuculiformes 349 

3.2.5.1 Cuculidae (cuckoos and allies) 350 

3.2.5.1.1 Cuculidae gen. et sp. indet 351 

A cuckoo has been identified based on a proximal right coracoid from Jerimalai B, spit 50. 352 

The morphology of the proximal coracoid superficially resembles the passerine coracoid, with 353 

a processus acrocoracoideus that overhangs the ventral side of the bone (a “hooked” processus 354 

acrocoracoid). However, the proximal articulation is more compressed and wider, the facies 355 

articularis clavicularis is straight, and the surface beneath it somewhat excavated. Compared 356 

to Cuculus, the specimen is more stout, and the scapular facet projects distinctly further 357 

dorsally from the shaft. The processus procoracoideus is broken and its shape and size cannot 358 

be ascertained. Therefore the specimen is assigned to Cuculidae gen. et sp. indet. 359 

 360 

3.2.6 Gruiformes 361 

3.2.6.1 Gruidae (cranes)  362 

3.2.6.1.1 Grus sp. 363 
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Remains of a crane, Grus sp., were recovered from Jerimalai B, spit 59. The specimen is a 364 

stout and almost complete axis, with only the tip of the processus ventralis corporis missing 365 

(Fig. 3M–N). The specimen is slightly longer (20.2 mm) than high (18.1 mm), and differs in 366 

that respect from Accipitriformes (higher than long), Anseriformes (much longer than high), 367 

and Phoenicopteriformes (more elongated). The specimen is in the size range of Ciconia, but 368 

differs from that genus (and other Ciconiiformes) in having a longer vertebral body and a 369 

lower processus spinosus. In that respect, it agrees well with larger members of the 370 

Gruiformes, Gruidae (and differs from, for instance Rallidae in having a much broader dens 371 

and a blunter and rounded processus spinosus, more projecting in Rallidae). Cranes are absent 372 

from Timor today, but Australia and New Guinea are home to several species of crane, 373 

including the Sarus crane Grus antigone and the Brolga G. rubicunda. However, the Jerimalai 374 

specimen differs from the extant species of Grus examined here, including G. antigone, G. 375 

rubicunda and G. grus, in having a facies articularis caudalis that is oriented slightly more 376 

caudally, having a bulbous, relatively low and blunt processus spinosus, having a relatively 377 

wide and blunt dens, and in dorsal view the caudal zygapophyses join the shaft more abruptly 378 

(more gradual in Grus). No species of crane is known from Timor, and the specimen clearly 379 

represents a species of crane absent from the region today. We refrain from naming this taxon 380 

until more material becomes available.  381 

 382 

3.2.6.2 Rallidae (rails and coots)  383 

3.2.6.2.1 Large rail  384 

The remains of a large rail were recovered from Matja Kuru 1A (a proximal coracoid, a 385 

partial quadrate, a distal left tibiotarsus and a proximal right humerus, spits 12, 19, 21, and 26) 386 

and Matja Kuru 1AA (a distal right tibiotarsus from spit 23). The remains represent a mixture 387 

of osteological characters and may represent more than one species, which is why we refrain 388 
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from assigning it to a genus at this point. The specimens are in the size range of the Purple 389 

Swamphen Porphyrio porphyrio and larger than most Fulica atra. The coracoid displays a 390 

processus procoracoideus which carries a facet for the scapula medially of the cup-shaped 391 

scapular facet, similar to P. porphyrio, but differs from that species in having a relatively 392 

shorter processus acrocoracoideus. In this aspect, the specimen is more similar to Fulica atra, 393 

but differs from that species in that the facies articularis clavicularis is wider. Moreover, the 394 

corpus coracoidei is wider and the processus procoracoideus is not distinctly set off from its 395 

medial margin, unlike Fulica.  396 

3.2.6.2.2. Medium rail 1 cf. Rallus/Rallina/Amaurornis 397 

A medium rail is represented by two right distal tibiotarsi and a right coracoid from Matja 398 

Kuru 1A (spit 14) and Matja Kuru 1AA (spits 15 and 19). In size, the specimens agree with 399 

Rallus, Rallina and Amaurornis. The right coracoid has a rather long and pointed processus 400 

acrocoracoideus, and is more gracile than the left one and agrees with the genera Rallus, 401 

Rallina, and Amaurornis.  402 

3.2.6.2.3 Medium rail 2 403 

A second species of medium rail was retrieved from Matja Kuru 1AA, spit 20. The specimen, 404 

a left proximal coracoid, differs from the right proximal coracoid retrieved from Matja Kuru 405 

1AA (spit 19) in that the processus acrocoracoideus is shorter and more blunt, and the 406 

specimen itself is more robust than Rallus, Rallina and Amaurornis.  407 

3.2.6.2.4 Zapornia sp. 408 

A proximal right humerus from Matja Kuru 1A (spit 8) represents a small rail in the genus 409 

Zapornia (formerly Porzana). There are currently three species of Zapornia known from 410 

Timor (Eaton et al., 2016; Trainor et al., 2008), but the specimen does not allow for a species 411 

identification.  412 

 413 
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 414 

3.2.7 Charadriiformes 415 

3.2.7.1 Scolopacidae (waders) 416 

3.2.7.1.1 Calidris spp. 417 

A right coracoid (Matja Kuru 1AA, spit 25), a left carpometacarpus (Matja Kuru 1A, spit 16) 418 

and two left distal humeri (Matja Kuru 1A, spits 4 and 6) are assigned to  sandpipers of the 419 

genus Calidris. The coracoid is small and has the typical charadriiform shape (a broad, 420 

overhanging facies articularis clavicularis and a deep, circular scapular facet) and lacks the 421 

foramen n. supracoracoidei in the procoracoid. This foramen is absent in Scolopacidae but 422 

variable in Glareolidae, Alcidae and Turnicidae (Mayr, 2011) but these have a derived 423 

morphology of the coracoid. . Within Scolopacidae, it can be distinguished based on its small 424 

size and agrees well with Calidris. The two distal humeri display an elongated and proximally 425 

directed processus supracondylaris dorsalis (characteristic for Charadriiformes). They are 426 

assigned to Scolopacidae because of the relatively shorter and more rounded processus 427 

flexorius which projects from the shaft at a right angle (oriented more proximally in the 428 

similarly-sized Charadrius). In both humeri, the fossa brachialis is deep and proximally 429 

clearly bordered off from the rest of shaft, a feature that is more pronounced in the smaller 430 

scolopacids such as Arenaria and Calidris. The specimens are smaller than Arenaria, and 431 

agree very well with Calidris. Carpometacarpus morphology is rather uniform within 432 

Charadriiformes, with a very straight os metacarpale majus, a proximally projecting processus 433 

extensorius, and a trochlea carpalis with a rounded ventral rim and an elliptical dorsal one. 434 

Given the small size of the specimen, it is referred here to Calidris as well. At least eight 435 

species of Calidris are known from Timor (Trainor et al., 2018), but because of the significant 436 

overlap in size, more material is needed to identify these remains to species level.  437 

 438 
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3.2.7.2 Laridae (gulls and terns) 439 

3.2.7.2.1 Laridae indet.  440 

A small species of Laridae is represented by a right coracoid from Matja Kuru 1A, spit 16. 441 

The specimen is broken in two and lacks the procoracoid, but has a wide and overhanging 442 

processus acrocoracoideus and a cup-shaped scapular facet, typical of Charadriiformes. The 443 

area under the processus acrocoracoideus is deeply excavated, much more so than in 444 

Charadriidae and Scolopacidae, and agrees most with the condition seen in Laridae. Distally, 445 

the medial sternal surface is excavated deeply as well, and in distal view, the extremitas 446 

sternalis is strongly curved, with the medial portion of facies articularis sternalis greatly 447 

dorsoventrally widened (Mayr, 2011). The specimen is small but larger than Chroicocephalus 448 

ridibundus, Sternula albifrons and Chlidonias hybrida, and is comparable in size with terns in 449 

the genus Sterna. Given that not all species were available for comparison, we refrain from 450 

assigning it to genus level. 451 

 452 

3.2.7.3 Turnicidae (buttonquails) 453 

Buttonquails are the most abundant taxon in the assemblages with a total of 38 454 

specimens. The Turnix assemblage displays variation in size that is most pronounced in the 455 

humeri, coracoids and tarsometatarsi. The size variation surpasses that seen in specimens of 456 

extant taxa, and suggests that at least two species of buttonquail were present on Timor until 457 

quite recently.  458 

3.2.7.3.1 Turnix maculosus 459 

The smaller morphotype is reported from Jerimalai B (spits 48 and 49), Matja Kuru 1A (spits 460 

12, 13, 23, 33, and 34) and Matja Kuru 1AA (spits 18, 19, 20, 22, 23, 25 and 35), and is 461 

referred to the Red-backed Buttonquail T. maculosus. The material consists of five distal 462 

tarsometatarsi, one distal right tibiotarsus, one proximal right carpometacarpus, two left 463 
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humeri, one proximal right humerus, a distal right humerus, four proximal right coracoids and 464 

three proximal left coracoids (MNI = 18) (Fig. 3P–Q, V). The specimens are smaller than T. 465 

suscitator in most measurements and partially overlap with T. sylvaticus (Fig. 5) for 466 

dimensions of the coracoid, humerus and tarsometatarsus. The modern Timor avifauna 467 

contains only T. maculosus, for which no skeletons were available for comparison for this 468 

study. However, T. maculosus is described as small and its body measurements and body 469 

weight (del Hoyo et al., 2017; Dunning, 2008) are smaller than for other species including T. 470 

suscitator. Furthermore, Hawkins et al. (2017b) identified T. cf. maculosus from Late 471 

Pleistocene deposits at Laili Cave, and it is therefore likely that the small morphotype group 472 

from Jerimalai and Matja Kuru 1A and 1AA represents the extant T. maculosus as well.  473 

3.2.7.3.2 Large Turnix†  474 

A second, larger species of Turnix is reported from Matja Kuru 1A (spit 8, 13, 18, 20, 24, 25, 475 

32 and 34) and Matja Kuru 1AA (spits 11, 14, 17, 20, 22, 23, 24 and 35), but not Jerimalai B. 476 

It is represented by a left carpometacarpus, three proximal left coracoids and two proximal 477 

right coracoids, one left humeri, four distal left humeri, one proximal right humerus, three 478 

right tarsometatarsi, one distal right tarsometatarsus, one proximal left tarsometatarsus, two 479 

distal left tibiotarsi and one distal right tibiotarsus (MNI = 20) (Fig. 3R, W, X). This larger 480 

morphotype is larger than T. sylvaticus, and partially overlaps with T. suscitator, T. tanki and 481 

T. ocellatus. However, the width and depth of shaft of the coracoid (Figure 5A) and the 482 

proximal and distal dimensions of the tarsometatarsus (Figs. 5E-F) surpass those of T. 483 

suscitator, T. tanki and T. ocellatus. This could indicate that this morphotype represents larger 484 

individuals of one or more of these three extant taxa (in which case they would represent an 485 

extirpated population, as none of these taxa occur on Timor today), albeit with slightly 486 

different proportions. Alternatively, this morphotype represents an unknown species whose 487 

dimensions only partially overlap with extant taxa. This indicates that a second, larger species 488 
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of Turnix was present on Timor in the Terminal Pleistocene and Holocene, and this species is 489 

now likely extinct. Radiocarbon dating of the latest occurrence of this morphotype, a proximal 490 

coracoid from Matja Kuru 1 A, spit 8 (Fig. 3X), indicates an age for this specimen of 1372–491 

1300 cal BP (S-ANU# 55223, 1490 ± 24 BP).  492 

 493 

3.2.7.4. Charadriiformes indet 494 

A right distal humerus from Matja Kuru 1AA (spit 26) and a proximal left tibiotarsus 495 

from Jerimalai (spit 15) represent medium-sized charadriiforms, but the specimens do not 496 

allow for a generic assignment.  497 

 498 

3.2.8. Accipitriformes 499 

3.2.8.1 Accipitridae (diurnal birds of prey) 500 

3.2.8.1.1 Haliaeetus leucogaster 501 

A proximal left tarsometatarsus from Matja Kuru 1A, spit 24 (Fig. 3AA), and a distal right 502 

tarsometatarsus from Jerimalai B, spit 16 (Fig. 3AC), are referred to the White-bellied Sea 503 

Eagle Haliaeetus leucogaster. The proximal tarsometatarsus preserves the two articular 504 

cotylae and the hypotarsal region. The crista lateralis is short and blunt, unlike Accipiter, 505 

Pernis, Elanus, Aviceda, Butastur, Circus and Aquila, and is agrees with the condition seen in 506 

Haliaeetus. The sulcus hypotarsi is deep and proximally bordered by a ridge that separates it 507 

from the proximal articular surface. In this aspect, the specimen differs from the similarly 508 

sized Circaetus and Aquila, and agrees with Haliaeetus leucogaster. Cranially, the 509 

impressiones retinaculi extensorii are distinct and form two parallel lines of approximately 3 510 

mm length, with the lateral one connecting to the cotyla. In Aquila and Circaetus, these 511 

impressions are less pronounced, whereas they are very distinct in Haliaeetus leucogaster. 512 

The distal right tarsometatarsus preserves only the most distal part of the shaft and the 513 
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trochlea. It differs from Aquila and Circaetus in having a slightly shorter trochlea metatarsi II 514 

in distal view, and agrees in this aspect best with H. leucogaster.  515 

 516 

3.2.9 Strigiformes 517 

3.2.9.1 Tytonidae (barn owls) 518 

3.2.9.1.1 cf. Tyto  519 

A proximal left phalanx proximalis digiti majoris and a distal left humerus, recovered from 520 

Jerimalai B, spit 59, and Matja Kuru 1A, spit 33, are tentatively referred to barn owls. Only 521 

the proximal half remains of the phalanx, but it is assigned to Tytonidae rather than Strigidae 522 

in that the proximal part of the blade rises gradually, whereas in Strigidae, the blade rises 523 

more abruptly from the pila cranialis, and that the dorsal surface of the pila cranialis is rather 524 

flat (more concave in Strigidae) (also see Göhlich and Ballman, 2013). The distal humerus 525 

only preserves the articular end which hampers identification of the specimen. However, what 526 

remains of the fossa musculi brachialis is well defined and excavated, typical for Tytonidae 527 

(see Suárez and Olson, 2015), and therefore this specimen is referred to Tytonidae rather than 528 

Strigidae. The specimen differs from Phodilus in having a broader epicondylus ventralis and a 529 

less pronounced tuberculum supracondylare dorsale. However, in most of the T. alba and T. 530 

longimembris specimens examined, the tuberculum supracondylare dorsale protrudes more 531 

distinctively from the shaft in cranial view, and the fossa olecrani on the caudal surface is 532 

deeper. The size of these two fragmentary remains is consistent with both specimens 533 

belonging to one species which is larger in dimensions than extant Tyto; the proximal left 534 

phalanx proximalis digiti majoris measures 9.25 mm in length (6.88 mm in T. alba, n = 7), the 535 

distal width of the humerus measures 16.29 mm (13.28 mm in T. alba, n = 7; 17.2 mm in T. 536 

longimembris, n = 1)  The specimensmay represent an endemic species of extinct barn owl, 537 

but given their fragmentary state, this identification should be treated with caution.  538 
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 539 

3.2.9.2 Strigidae (typical owls) 540 

3.2.9.2.1 cf. Ninox 541 

A distal tibiotarsus from Jerimalai B, spit 61 represents a boobook owl. Similar to all 542 

Strigiformes, the specimen lacks a pons supratendineus, , and its mediolateral dimensions are 543 

slightly wider than its antero-posterior ones, which distinguishes it from Tytonidae. In size, it 544 

agrees well with the boobook owls in the genus Ninox, and is much larger than Otus, the other 545 

genus of strigid owls on Timor and one which displays small body size. It is therefore 546 

tentatively referred to Ninox.  547 

 548 

3.2.10 Falconiformes 549 

3.2.10.1 Falconidae (falcons) 550 

3.2.10.1.1 Falco sp. 551 

Falcons are represented by a right coracoid from Matja Kuru 1AA (spit 24). The specimen 552 

lacks the acrocoracoid, but the procoracoid is elongated and triangular in shape, and what 553 

remains of the scapular facet indicates that it was shallow. These features are characteristic of 554 

Falconidae. The specimen lacks a foramen in the procoracoid, a feature characteristic for a 555 

few species within Falconidae, i.e. Falco, Microhierax and Polihierax (Suárez and Olson, 556 

2001). The latter two are small species, and the Matja Kuru specimen agrees better with 557 

Falco. Four species of Falco have been recorded on Timor, Falco moluccensis, F. subbuteo, 558 

F. longipennis and F. peregrinus. There is significant overlap in size between these species, 559 

and without the complete bone, we refrain from assigning this specimen to species level.  560 

 561 

3.2.11 Passeriformes 562 

3.2.11.1 Motacillidae (wagtails and pipits) 563 
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3.2.11.1.1 Anthus/Motacilla 564 

A left proximal humerus from Matja Kuru 1AA’s spit 22 represents a motacillid in the genera 565 

Anthus or Motacilla. This small proximal humerus displays a very deep fossa 566 

pneumotricipitalis dorsalis that is confluent with the fossa pneumotricipitalis ventralis. 567 

Confluent fossae like this are present in only a few passerine groups, including Prunellidae, 568 

Aegithalidae, Remizidae, and Motacillidae (Jánossy, 1983). The crus dorsale fossae is absent 569 

and the floor of the fossa pneumotricipitalis (i.e., the bicipital shelf) is very thin. In these 570 

features the specimen agrees with Motacillidae. Seven species of Motacillidae in the genera 571 

Motacilla and Anthus are present on Timor, but the current incomplete specimen does not 572 

allow for a distinction between them. 573 

 574 

3.2.11.2 Family indet. 575 

3.2.11.2.1 Medium passerine 576 

A right humerus from Matja Kuru 1AA (spit 34) represent a medium-sized passerine. The 577 

humerus lacks the most diagnostic part, the proximal articulation, but based on size belongs to 578 

a medium-sized passerine.  579 

3.2.11.2.2 Small passerine sp. 1 580 

A left proximal humerus from Matja Kuru 1AA (spit 20) represents a species of very small 581 

passerine. The humerus displays a deep fossa pneumotricipitalis dorsalis that is separated 582 

from the fossa pneumotricipitalis ventralis by the crus dorsale fossae. This specific humeral 583 

morphology is present in several groups of small passerines, including Rhipiduridae and 584 

Zosteropidae, and a family level identification cannot be ascertained at this point.  585 

3.2.11.2.3 Small passerine sp. 2 586 

A second species of small passerine is represented by two humeri from Matja Kuru 1A’s spits 587 

24 and 34. They differ from the previous small passerine humerus in that the fossa 588 
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pneumotricipitalis dorsalis is completely separated from the fossa pneumotricipitalis ventralis 589 

by the crus dorsale fossae, and thus represent a separate species.  590 

 591 

 592 

Discussion  593 

Bird remains from Timor were first described by Hawkins et al. (2017a,b), who 594 

reported six taxa from Late Pleistocene (44.6–11.2 ka) deposits at Laili Cave. The current 595 

study adds twenty-four new taxa to the avian fossil record of Timor, including rails, cuckoos, 596 

sandpipers, terns, sea-eagles, falcons, owls and wagtails. In addition, we identify two taxa that 597 

are currently not known from Timor, a large buttonquail Turnix sp. and the crane Grus sp., 598 

both likely representing extinct species. Fragmentary remains hint at a potentially extinct 599 

large barn owl, but the material currently available does not allow unambiguous 600 

identification.  601 

 602 

Both Jerimalai B and Matja Kuru 1 preserve evidence for early human occupation, but 603 

no cut marks or other signs indicative of human subsistence were observed on any bird bones. 604 

This does not necessarily mean that birds were not eaten by early humans, since many birds 605 

are small enough to be eaten whole. The taphonomy of the Jerimalai B and Matja Kuru 1 606 

assemblages (Table 2) suggests that avian predators, most likely barn owls, were the main 607 

accumulating agents for the majority of the assemblage. This is in agreement with the avian 608 

assemblage from Laili cave (Hawkins et al., 2017a,b). However, Hawkins et al. (2017a) 609 

suggested that pigeons may have been hunted by humans, as they fall outside the prey size 610 

spectrum for barn owls. At Jerimalai, the pigeon remains show a somewhat different 611 

taphonomic profile, with equal numbers showing no digestion and minimal digestion. Quails, 612 

buttonquails and songbirds show predominantly minimal digestion, and all three groups of 613 
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birds fall within the barn owl prey size (< 200 gr., Morris, 1979). Furthermore, pigeons are 614 

most abundant during phase IV (Figure 7), which saw the most intense human occupation. 615 

This could suggest that the pigeon remains were accumulated by a taphonomic agent other 616 

than barn owls. This is in line with the conclusions of Hawkins et al. (2017a) for Laili cave, 617 

who suggested that some pigeons may have been deposited by humans instead.  618 

 619 

Despite the long presence of modern humans on Timor and adjacent islands, there is 620 

as of yet no evidence for an anthropogenic role in the extinction of Pleistocene (mega)fauna 621 

(Louys et al., 2016). The crane Grus sp. and the buttonquail Turnix sp. represent the first 622 

records of avian extinctions on Timor. Although our data as of yet do not allow for an 623 

explanation for their disappearance, the fact that they disappear at different points in time may 624 

point to different causal mechanisms.  625 

The crane Grus sp. is represented by only a single specimen from spit 59 at the base of 626 

the Jerimalai B sequence. Radiometric dating of marine shells from Jerimalai B’s lower levels 627 

indicates an age of at least 42,000 cal BP (O’Connor et al., 2011; Langley and O’Connor, 628 

2016: table 2) for the base of the sequence. Depositional mixing of the lower levels is 629 

believed to be very limited, and the Grus sp. specimen is therefore assumed to be Late 630 

Pleistocene in age as well. Cranes are generally absent from Island Southeast Asia, but two 631 

species of cranes are known from Southern Asia and Australia (del Hoyo et al., 2017). The 632 

Brolga (Grus rubicunda) occurs in northern Australia and small parts of New Guinea, 633 

whereas the Sarus Crane (G. antigone) is currently found in northwest India, Myanmar, 634 

Cambodia and northern Australia, but not in between (del Hoyo et al., 2017). Both birds are 635 

wetland species and non-migratory, rendering it unlikely that the Jerimalai specimen 636 

represents a seasonal migrant. Genetic work has retrieved the Brolga and Sarus Crane as sister 637 

taxa (Yu et al., 2011). In addition, the Sarus Crane likely originated in Southeast 638 
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Asia,dispersed northwards and southwards during times of low sea level, and subsequently 639 

became extinct in most of Island Southeast Asia (Das, 2010; Wood and Krajweski, 1996). 640 

Although the axis from Jerimalai cannot be assigned to species level, it is indicative of a Late 641 

Pleistocene population of cranes on Timor that has since been extirpated. On the basis of the 642 

single occurrence of Grus sp. at the base of the Jerimalai sequence, Grus sp. clearly 643 

overlapped with modern humans at Jerimalai. However, as we know virtually nothing of its 644 

ecology, any interpretation of its likely cause of extinction would be speculative. Likewise, 645 

inferring timing of extinction based on one specimen is uncertain at best. It should be noted 646 

that Wetmore (1940) identified a humerus from Late Pleistocene deposits at Watoealang on 647 

Java as belonging to the Common Crane Grus grus. It is unclear if Wetmore compared the 648 

specimen to G. rubicunda and G. antigone, but this record strengthens the notion that cranes 649 

were more widespread in Island Southeast Asia in the Late Pleistocene. If that is indeed the 650 

case, the disappearance of Grus from Timor may have been in response to regional factors, 651 

beyond those specific to Timor.  652 

 653 

The large buttonquail is absent from Jerimalai, but is present from spits 34–8 at Matja 654 

Kuru 1A, and from spits 35–11 at Matja Kuru 1AA. The deepest levels at Matja Kuru 1A and 655 

AA date to ~11 ka (Langley and O’Connor, 2016: tables 3–4). Mollusk shells from Matja 656 

Kuru 1A spit 8, which marks the larger Turnix morphotype’s highest stratigraphic occurrence, 657 

have been dated to 5,456–5,274 cal BP (Langley and O’Connor, 2016: tables 3). However, 658 

radiocarbon dates produced for this site suggest it has undergone considerable disturbance.  659 

Because of this, we elected to obtain a direct radiocarbon date from the larger Turnix 660 

morphotype from spit 8. This indicated a much younger age (of 1,372–1,300 cal BP, see 661 

above), suggesting that it disappeared more recently than expected from the site 662 

chronostratigraphic profile. Interestingly, this date is roughly coeval with the disappearance of 663 
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Timor’s giant rats (Aplin and Helgen, 2010; O’Connor and Aplin, 2007), such that these 664 

extinctions may have a common anthropogenic or environmental cause. 665 

So far, this represents the first extinction of a bird species in the Holocene in Island 666 

Southeast Asia. However, as the fossil record for birds in this region remains poor (Meijer, 667 

2014), more Holocene and Pleistocene extinctions will undoubtedly be recorded as new 668 

material continues to be excavated. An extirpated species of buttonquail, Turnix 669 

novaecaledoniae (previously considered a subspecies of the Australian T. varius, BirdLife 670 

International 2016), was also recovered from Holocene deposits on New Caledonia (Anderson 671 

et al., 2010; Balouet and Olson, 1989). This species has not been seen for over a century, but 672 

is abundant in pre-European cave deposits (Balouet and Olson, 1989) and may have survived 673 

until quite recently, as indicated by its presence in surface layers at Mé Auré (Boyer et al., 674 

2010) and Pindai caves (Anderson et al., 2010). Interestingly, fossil specimens of T. 675 

novaecaledoniae are larger than their modern-day equivalent (Balouet and Olson, 1989), but 676 

Balouet and Olson do not give an explanation for this. Measurements of the coracoids and 677 

humeri of the larger Timor morphotype overlap with T. novaecaledoniae. Although this could 678 

be interpreted as the larger Timor buttonquail representing a Timorese population of T. 679 

novaecaledoniae, the sheer distance between Timor and New Caledonia renders this unlikely. 680 

The reasons for the disappearance of T. novaecaledoniae also remain unclear, but may include 681 

an anthropogenic increase in fire frequency, introduction of non-native predators and loss of 682 

habitat, specifically a reduction of dry forest (Boyer et al., 2010). While similar factors may 683 

have played a role in the extinction of the Timor buttonquail, more research is needed to 684 

ascertain the presence and last occurrence date of this taxon in other sites, and in relation to 685 

other extinctions in the late Holocene of Timor. 686 

 687 
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The absence of high numbers of extinct avian taxa from Late Pleistocene deposits at 688 

Jerimalai and Matja Kuru 1 is in line with evidence from other Late Pleistocene avian 689 

assemblages from the region, such as Flores (Meijer et al., 2015b) and Borneo (Stimpson, 690 

2010). Although the fossil bird record for Island Southeast Asia remains rather poor, the 691 

emerging pattern suggests that Late Pleistocene avian extinctions in Wallacea were few, with 692 

extinctions limited to large-bodied taxa, and that avian lineages have been continuous across 693 

Southeast Asia since at least the Late Pleistocene. This is in contrast to other oceanic island 694 

archipelagoes, where the arrival of modern humans in the Holocene often resulted in 695 

dramatically reduced avian diversity (Cheke and Hume, 2008; James, 1995; James and Olson, 696 

1991; Milberg and Tyrberg, 1993; Olson and James, 1991; Steadman, 2006; Wood et al., 697 

2017; Worthy and Holdaway, 2002). The extinction of the crane Grus sp., a large-bodied bird 698 

on Timor would be in line with the extinction of other large avian taxa from Flores, such as 699 

the giant stork Leptoptilos robustus and the vulture Trigonoceps sp. (Meijer et al., 2015b), and 700 

indicates that Quaternary megafauna extinctions in Wallacea included avian taxa as well as 701 

proboscideans and reptiles. 702 
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Figure 1. Location of Matja Kuru 1 and Jerimalai in Timor-Leste. 

 875 



38 
 

 

Figure 2. Abundance of avian number of identifiable specimens (NISP) throughout the sequence at 

Jerimalai B, Matja Kuru 1A and 1AA. X-axis indicates spit number.  
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Figure 3. Selected avian remains from Jerimalai B and Matja Kuru 1A and 1AA. Right coracoid in 
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ventral view of Dendrocygna arcuata from Matja Kuru 1AA, spit 16 (A) and extant D. arcuata, 

NMNH 344843 (B). Right tarsometatarsus in dorsal view of Synoicus ypsilophorus from Matja Kuru 

1AA, spit 24 (C), and extant S. ypsilophorus NMNH 553359 (D). Right humerus in caudal view of S. 

ypsilophorus from Matja Kuru 1A, spit 14 (E) and extant S. ypsilophorus, NMNH 553359 (F). Right 

coracoid in dorsal view of extant Ducula perspicillata, NMNH 560802, (G) and partial right coracoid 

of cf. Ducula/Caloenas Jerimalai B, spit 14 (H). Right coracoid in dorsal view of cf. Macropygia from 

Jerimalai B, spit 10 (I), and extant Macropygia unchall NMNH 344626 (J), extant Columba vitiensis 

NMNH 560654, (K) and partial right coracoid of Columba vitiensis from Jerimalai B, spit 10 (L). Axis 

of Grus sp. from Jerimalai B, spit 59 in cranial (M), and lateral (N) view.  Axis of extant Grus grus B 

6898 in lateral view (O) Left humerus in caudal view of Turnix maculosus from Matja Kuru 1A, spit 

33 (P), Turnix maculosus from Matja Kuru 1AA, spit 35 (Q), large Turnix morphotype from Matja 

Kuru 1A, spit 32 (R), extant T. suscitator NMNH 562149 (S), extant T. sylvaticus NMNH 429078 (U). 

Partial left coracoid in dorsal view of Turnix maculosus from Matja Kuru 1AA, spit 33 (V), large 

Turnix morphotype from Matja Kuru 1AA, spit 3 (W), and large Turnix morphotype Matja Kuru 1A, 

spit 8 (X). This specimen marks the last occurrence of this taxon. Left coracoid in dorsal view of 

extant T. suscitator, NMNH 562149 (Y), and extant T. sylvaticus NMNH 429078 (Z). Partial left 

tarsometatarsus in dorsal view of Haliaeetus leucogaster from Matja Kuru 1A, spit 24 (AA), and 

extant H. leucogaster NMNH 556992 (AB) Partial right tarsometatarsus in dorsal view of Haliaeetus 

leucogaster from Jerimalai B, spit 16 (AC), and extant H. leucogaster NMNH 556992 (AD). Scale 

bars denote 2 cm, except for M,N, O (Grus) and P–Z (Turnix) where they equal 1 cm.  
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Figure 4. Phasianidae. A. Measurements of the humerus (A), tibiotarsus (B) and tarsometatarsus (C) 

of fossil Phasianid remains from Matja Kuru 1 and Jerimalai B and extant Synoicus ypsilophorus and 

S. chinensis. The dotted line in (B) indicates the distal width of the single S. chinensis specimen from 

Jerimalai B. 
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Figure 5. Selected measurements of extant Turnicidae and fossil specimens from Matja Kuru 1 and 

Jerimalai B. A–B, coracoid; C–D, humerus, crosses indicate data range for T. varius and T. 

novaecaledoniae from Balouet and Olson (1989); E–F, tarsometatarsus. 
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Figure 6. Digestion scores for four of the major groups of birds at Jerimalai B and Matja Kuru 1A and 

1AA. 
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Figure 7. Distribution of pigeons (Columbidae), quails (Phasianidae) and buttonquails (Turnicidae) 

over time in Matja Kuru 1A and 1AA, and Jerimalai B. 
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